
ECE 513 HW5 Arpad Voros

1. Given the even part of a real signal is

xe(n) =
x(n) + x(−n)

2

(a) The DFT of xe(n) is

1

2

N−1∑
n=0

(x(n) + x(−n))e
−j2πkn

N (1)

Replace all −n’s with n’s and change properties of the range of summation on second
term (now reversing direction)

1

2

N−1∑
n=0

x(n)e
−j2πkn

N +
1

2

1−N∑
n=0

x(n)e
j2πkn
N (2)

And we know that x(−n) is equivalent to x(N − n) due to circular shifting, which
means n = 0 ↔ n = N , so we can add N to all our n’s to keep the second term
equivalent

1

2

N−1∑
n=0

x(n)e
−j2πkn

N +
1

2

1∑
n=N

x(n)e
j2πkn
N ej2πk (3)

and thus

1

2

N−1∑
n=0

x(n)e
−j2πkn

N +
1

2

N∑
n=1

x(n)e
j2πkn
N (4)

And again, since we know n = 0↔ n = N , the range of our second summation can
match the first one

1

2

N−1∑
n=0

x(n)
[
e

−j2πkn
N + e

j2πkn
N

]
(5)

N−1∑
n=0

x(n) cos

(
2πnk

N

)
= Re

{
N−1∑
n=0

x(n)e
−j2πkn

N

}
(6)

Meaning the DFT of xe(n) is Re{X(k)}
(b) First, we know that IDFT of the real component of X(k) is

1

N

N−1∑
k=0

Re{X(k)}e
j2πkn
N (7)

1

N

N−1∑
k=0

[
N−1∑
n=0

x(n) cos

(
2πkn

N

)]
e
j2πkn
N (8)

1

2N

N−1∑
k=0

[
N−1∑
n=0

x(n)e
−j2πkn

N +

N−1∑
n=0

x(n)e
j2πkn
N

]
e
j2πkn
N (9)

Similar to in (a), we replace all the n’s with −n’s to make the second term’s expo-
nential term fit our definition of the DFT. This, again, changes the properties of the
range of summation on second term (now reversing direction)

1

2N

N−1∑
k=0

[
N−1∑
n=0

x(n)e
−j2πkn

N +

1−N∑
n=0

x(−n)e
−j2πkn

N

]
e
j2πkn
N (10)

1



ECE 513 HW5 Arpad Voros

Again, similar to (a), we know that the range of the summation is equivalent to
n = 0→ N − 1, so we get

1

2N

N−1∑
k=0

(X(k) +X(−k))e
j2πkn
N (11)

1

2N

N−1∑
k=0

X(k)e
j2πkn
N +

1

2N

N−1∑
k=0

X(−k)e
j2πkn
N (12)

Showing that the IDFT of the real component of X(k) can be represented in terms
of x(n) in the following fashion

1

N

N−1∑
k=0

Re{X(k)}e
j2πkn
N =

x(n) + x(−n)

2
(13)

2. A length of sampled speech has 63412 samples. An FIR digital filter has 98 coefficients.
We want to apply this filter to the speech using the overlap-add convolution procedure
with block size of 512 samples. Assume: input → array x, filter coefficients → array b,
output → array y

(a) The number of blocks of data is calculated by

B =

⌈
63412

512− 98 + 1

⌉
= 153 (14)

(b) The number of zeros added to the filter must be equivalent to the block size minus
the length of the FIR digital filter (amount of coefficients). In this case, that’s
512− 98 = 414 zeros. Another way to calculate this is to find the number of speech
samples in each block, and then append that minus one zeros, which still results in
414. In MATLAB, we calculate using the latter

1 %% 2
2 x = normrnd(0, 1, 1, 63412); % random speech
3 b = ones(1, 98); % all coefficients 1
4

5 block size = 512;
6 speech segment len = block size − length(b) + 1;
7 num blocks = ceil(length(x) / speech segment len);
8

9 b pad = [b, zeros(1, speech segment len − 1)];

>> speech_segment_len - 1

414

(c) The number of zero’s to be added to the first block of data is equivalent to the block
size minus the length of the speech segment within each block. In this case, that’s
512− 415 = 97. The number of data values used in a block of data has already been
calculated in (b), given by speech_segment_len

2



ECE 513 HW5 Arpad Voros

1 % storing each block in 2d array, each row is a different block
2 x blocks = zeros(num blocks, block size);
3

4 % populate the blocks accordingly
5 for i = 1:num blocks − 1
6 x blocks(i, :) = [x(((i − 1) * speech segment len) + 1:(i * ...

speech segment len)), zeros(1, length(b) − 1)];
7 end
8 % populate the last block differently, since the speech length is ...

not a perfect multiple of speech segment len
9 x blocks(num blocks, :) = [x(((num blocks − 1) * ...

speech segment len):end), zeros(1, block size − (length(x) − ...
(num blocks − 1) * speech segment len) − 1)];

As seen, the number of zeros appended to each block is

>> length(b) - 1

97

And the number of data points within each block is given by

>> speech_segment_len

415

(d) The first block would be generated as such. First the output y must be initialized
with zeros, and the for each block, the selected range of y (size of block size) must
add the convolution between the FIR filter and the block to itself. Here is the first
block in MATLAB

1 % initialize output y
2 y = zeros(size(x));
3

4 % perform dft on padded filter and first block
5 ft1 = fft(b pad);
6 ft2 = fft(x blocks(1, :));
7

8 % add result to appropriate y range. in this case, the first block ...
uses indicies 1 to 512

9 y(1:block size) = y(1:block size) + ifft(ft1 .* ft2);

(e) All blocks of data has already been calculated in part (c), so the second block of
data will also append zeros of length 97, given by

>> length(b) - 1

97

The DFT of this second block is given by the following MATLAB script

1 % perform dft on second block
2 ft3 = fft(x blocks(2, :));

3



ECE 513 HW5 Arpad Voros

(f) Similar to part (d), the second block of data will be added to the output y in the
following way

1 % add the second block, shifting over by speech segment len amount, ...
to allow for 97 data points of overlap

2 y((speech segment len + 1):(speech segment len + block size)) = ...
y((speech segment len + 1):(speech segment len + block size))) + ...
ifft(ft1 .* ft3);

This homework was difficult to manage by doing blocks individually, so I will include
how to calculate all of y

1 % dft of padded FIR filter
2 ft1 = fft(b pad);
3 % row−wise dft of each block, N = block size
4 x ft = fft(x blocks, block size, 2);
5

6 % initialize output y
7 y = zeros(size(x));
8 idx = 0;
9 % populate y accordingly

10 for i = 1:num blocks − 1
11 y((idx + 1):(idx + block size)) = y((idx + 1):(idx + ...

block size)) + ifft(ft1 .* x ft(i, :));
12 idx = idx + speech segment len;
13 end
14 % last block is calculated differently due to y being length of ...

input x
15 last part = ifft(ft1 .* x ft(num blocks, :));
16 y(idx:end) = y(idx:end) + last part(1:length(y(idx:end)));

3. (a) An arbitrary rectangular window ranges from 0 ≤ n ≤ L − 1 with unity gain.
The frequency spectra for this rectangular window can be derived by taking the
discrete-time Fourier transform of the time domain window. Since the window is
0 ∀ n < 0, n > L− 1, the limits of summation range from 0 to L− 1

Wr(f) =

L−1∑
n=0

e−j2πfn (15)

And we know that a geometric series result in the following

a

n−1∑
k=0

rk = a
1− rn

1− r
(16)

So if we set r = e−jω, then we evaluate the sum to be

1− e−j2πfL

1− e−j2πf
(17)

Since this window is defined in the range n = 0 → L − 1, the Fourier transform is

equivalent to the Fourier transform of the same window in range n = −(L−1)
2 → L−1

2

with a time shift of L−1
2 . Knowing this, we are able to pull out these time-shifting

4



ECE 513 HW5 Arpad Voros

exponential terms and construct sinusoidal functions.[
1
2j
1
2j

][
e
j2πfL

2 − e
−j2πfL

2

e
j2πf

2 − e−j2πf
2

]
e

−j2πfL
2

e
−j2πf

2

(18)

sin(πfL)

sin(πf)
e−jπf(L−1) (19)

And in terms of angular frequency ω = 2πf

Wr(ω) =
sin(ω2L)

sin(ω2 )
e−j

ω
2 (L−1) (20)

The Hann window’s continuous time spectra can be derived by taking the discrete-
time Fourier transform of the time domain window. Similar to the previous window,
the limits of summation range from 0 to L− 1

Wh(f) =

L−1∑
n=0

[
1

2
− 1

2
cos

(
2πn

L− 1

)]
e−j2πfn (21)

1

2

L−1∑
n=0

e−j2πfn − 1

4

L−1∑
n=0

(
e
j2πn
L−1 + e

−j2πn
L−1

)
e−j2πfn (22)

We use the geometric series in equation (16) to evaluate all sums. And similar to
the previous window, we know that the range n = 0→ L− 1 results in a sinusoidal
wave with a time shift of L−1

2 , so we can begin constructing sinusoids

1

2

[
1− e−j2πfL

1− e−j2πf

]
− 1

4

L−1∑
n=0

e−j2πn(f− 1
L−1 ) − 1

4

L−1∑
n=0

e−j2πn(f+ 1
L−1 ) (23)

1

2

[
sin(πfL)

sin(πf)

]
e−jπf(L−1)− 1

4

[
1− e−j2πL(f− 1

L−1 )

1− e−j2π(f− 1
L−1 )

]
− 1

4

[
1− e−j2πL(f+ 1

L−1 )

1− e−j2π(f+ 1
L−1 )

]
(24)

1

2

[
sin(πfL)

sin(πf)

]
e−jπf(L−1) − 1

4

 sin
(
πL
(
f − 1

L−1

))
sin
(
π
(
f − 1

L−1

))
 e−jπ(f(L−1)−1)+

− 1

4

 sin
(
πL
(
f + 1

L−1

))
sin
(
π
(
f + 1

L−1

))
 e−jπ(f(L−1)+1) (25)

The ±1 in the last two exponential terms will result in e±jπ = −1, so we can safely
make some sign changes2 sin(πfL)

sin(πf)
+

sin
(
πL
(
f − 1

L−1

))
sin
(
π
(
f − 1

L−1

)) +
sin
(
πL
(
f + 1

L−1

))
sin
(
π
(
f + 1

L−1

))
 e−jπf(L−1)

4
(26)

5



ECE 513 HW5 Arpad Voros

And in terms of angular frequency ω = 2πf

Wh(ω) =

2 sin(ω2L)

sin(ω2 )
+

sin
(
L
(
ω
2 −

π
L−1

))
sin
(
ω
2 −

π
L−1

) +
sin
(
L
(
ω
2 + π

L−1

))
sin
(
ω
2 + π

L−1

)
 e−j ω2 (L−1)

4

(27)

(b) Plotting the results from (a) in MATLAB. Here is the script

1 %% 3 part b
2 L = 30;
3 N = 400;
4 k = −100:100;
5 omegak = 2 * pi * k / N;
6

7 % rectangular window DTFT
8 Wr omegak = sin((omegak * L) / 2) .* exp(−1i * (L − 1) * omegak / 2) ...

./ sin(omegak / 2);
9

10 % Hann window DTFT
11 Wh omegak = (2*(sin((omegak * L) / 2) ./ sin(omegak / 2)) + (sin(L * ...

(omegak / 2 − pi / (L − 1))) ./ sin(omegak / 2 − pi / (L − 1))) ...
+ (sin(L * (omegak / 2 + pi / (L − 1))) ./ sin(omegak / 2 + pi / ...
(L − 1)))) .* exp(−1i * (L − 1) * omegak / 2) / 4;

The results are plotted with respect to k, which ranges from -100 to 100.

0

10

20

30

m
a
g
n
it
u
d
e

Magnitude Response - Rectangular Window Freq. Spectrum

-100 -80 -60 -40 -20 0 20 40 60 80 100

k

-4

-2

0

2

4

p
h
a
s
e
 (

ra
d
)

Phase Response - Rectangular Window Freq. Spectrum

-100 -80 -60 -40 -20 0 20 40 60 80 100

k

Figure 1: Magnitude and Phase Response of Rectangle Window

6



ECE 513 HW5 Arpad Voros

0

5

10

15

m
a
g
n
it
u
d
e

Magnitude Response - Hann Window Freq. Spectrum

-100 -80 -60 -40 -20 0 20 40 60 80 100

k

-4

-2

0

2

4

p
h
a
s
e
 (

ra
d
)

Phase Response - Hann Window Freq. Spectrum

-100 -80 -60 -40 -20 0 20 40 60 80 100

k

Figure 2: Magnitude and Phase Response of Hann Window

(c) Assume we have an incoming signal x(t) consisting of 3 summated cosinusoidal wave-
forms with frequencies of 200 Hz, 220 Hz, and 250 Hz. Calculate the N-point DFT of
xri(n) = x(n)wri(n) as well as xhi(n) = x(n)whi(n), where N = 214, and the rect-
angular window (wri) and Hann window (whi) have window length L = 50, 100, 150
respective to i = 1, 2, 3.

Before I show my results, here is the heavily commented MATLAB script. I did
not go off the script on the slides, so it might be longer than normal. However, the
results are one in the same.

1 % getting time vector or arbitrary (but long) length
2 % since we are preparing to sample at Fs = 1500 Hz
3 ∆T = 1e−6;
4 tfinal = 1;
5 t = 0:∆T:tfinal;
6 t = round(t, 6);
7

8 % sampling frequency, calculate nT
9 Fs = 1500;

10 Ts = 1 / Fs;
11 nfinal = tfinal / Ts;
12 n = 0:nfinal;
13

14 % create our signal x(t)
15 F1 = 200;
16 F2 = 220;
17 F3 = 250;
18 xat = cos(2*pi*F1*t) + cos(2*pi*F2*t) + cos(2*pi*F3*t);
19

20 % sample at nT, this algorithm was showcased in my HW3
21 nT i = zeros(size(n));
22 for i = n

7



ECE 513 HW5 Arpad Voros

23 nT i(i + 1) = find(round(i * Ts, 6) == t);
24 end
25 xanT = xat(nT i);
26 nT = t(nT i);
27

28 % get N value for resolution of dft
29 N = 2ˆ14;
30 % get L values. I included a 400 just to see what a large window ...

looked like
31 L = [50; 100; 150; 400];
32 % k ranges from 1 −> N (frequency domain). NOT 0 or else we have a ...

divide by 0
33 k = 1:N;
34

35 % preallocate space for rectangular and Hann windows results
36 xr = zeros(3, length(xanT));
37 xh = zeros(3, length(xanT));
38 % loop through all window lengths
39 for i = 1:length(L)
40 en = 0:L(i) − 1;
41 % preallocate our time domain windows with zeros, ...

computationally efficient
42 wr time = zeros(1, length(xanT));
43 wh time = zeros(1, length(xanT));
44

45 % create our windows in time domain
46 wr time(1:L(i)) = 1;
47 wh time(1:L(i)) = 0.5 − 0.5*cos(2*pi*en./(L(i) − 1));
48

49 % element−wise multiply our windows with our sampled signal, x(nT)
50 xr(i, :) = wr time .* xanT;
51 xh(i, :) = wh time .* xanT;
52 end
53

54 % N−point DFT of our windows
55 xr fft = fft(xr, N, 2);
56 xh fft = fft(xh, N, 2);
57

58 % plot with respect to frequency
59 F = (omegak/(2*pi))*Fs;
60

61 % plot and save all of our dft's of xr i and xh i
62 for i = 0:length(L) − 1
63 figure(2*i + 1);
64 plot(F(1:N/2), abs(xr fft(i + 1, 1:N/2)));
65 title(sprintf("Spectrum of Rect. Window on x(t), (X h(k)), L = ...

%d, i = %d", L(i + 1), i + 1));
66 xlabel("f (Hz)");
67 ylabel("magnitude");
68 print(sprintf("3c rect %d", i + 1), "−deps");
69

70 figure(2*i + 2);
71 plot(F(1:N/2), abs(xh fft(i + 1, 1:N/2)));
72 title(sprintf("Spectrum of Hann Window on x(t), (X h(k)), L = ...

%d, i = %d", L(i + 1), i + 1));
73 xlabel("f (Hz)");
74 ylabel("magnitude");
75 print(sprintf("3c hann %d", i + 1), "−deps");
76 end

8



ECE 513 HW5 Arpad Voros

i. L = 50 for both rectangular and Hann window

0 100 200 300 400 500 600 700 800

f (Hz)

0

5

10

15

20

25

30

m
a
g
n
it
u
d
e

Spectrum of Rect. Window on x(t), (X
h
(k)), L = 50, i = 1

Figure 3: Xr1 where L1 = 50

0 100 200 300 400 500 600 700 800

f (Hz)

0

2

4

6

8

10

12

m
a
g
n
it
u
d
e

Spectrum of Hann Window on x(t), (X
h
(k)), L = 50, i = 1

Figure 4: Xh1
where L1 = 50

This is a small window length, so the Hann window will suffer greater than
the rectangular. As seen, the Hann window has far less magnitude than the
rectangular window and less distinct peaks.

9



ECE 513 HW5 Arpad Voros

ii. L = 100 for both rectangular and Hann window

0 100 200 300 400 500 600 700 800

f (Hz)

0

10

20

30

40

50

60

m
a
g
n
it
u
d
e

Spectrum of Rect. Window on x(t), (X
h
(k)), L = 100, i = 2

Figure 5: Xr2 where L2 = 100

0 100 200 300 400 500 600 700 800

f (Hz)

0

5

10

15

20

25

30

m
a
g
n
it
u
d
e

Spectrum of Hann Window on x(t), (X
h
(k)), L = 100, i = 2

Figure 6: Xh2
where L2 = 100

Similar to L = 50, the rectangular window has more distinct peaks than the
Hann window. In fact, it is here at L = 100 where the rectangular window has
all three distinct peaks. The Hann window is still struggling, but one upside is
the vastly reduced noise on all non-input frequencies.

10



ECE 513 HW5 Arpad Voros

iii. L = 150 for both rectangular and Hann window

0 100 200 300 400 500 600 700 800

f (Hz)

0

10

20

30

40

50

60

70

80

m
a
g
n
it
u
d
e

Spectrum of Rect. Window on x(t), (X
h
(k)), L = 150, i = 3

Figure 7: Xr3 where L3 = 150

0 100 200 300 400 500 600 700 800

f (Hz)

0

5

10

15

20

25

30

35

40

m
a
g
n
it
u
d
e

Spectrum of Hann Window on x(t), (X
h
(k)), L = 150, i = 3

Figure 8: Xh3
where L3 = 150

Here, the the rectangular window still has its three peaks, but at the cost of a
lot of noise. (roughly 15 in magnitude). The Hann window is just starting to
forming peaks, and I hypothesize that a greater window length will enable the
Hann window to form its distinct peaks. The Hann window does an incredible
job with reducing noise when compared to the rectangular window.

11



ECE 513 HW5 Arpad Voros

iv. Not necessary for homework, but reasoning from my answer in previous sections.
L = 400 for both rectangular and Hann window

0 100 200 300 400 500 600 700 800

f (Hz)

0

50

100

150

200

250

m
a

g
n

it
u

d
e

Spectrum of Rect. Window on x(t), (X
h
(k)), L = 400, i = 4

Figure 9: Xr4 where L4 = 400

0 100 200 300 400 500 600 700 800

f (Hz)

0

10

20

30

40

50

60

70

80

90

100

m
a

g
n

it
u

d
e

Spectrum of Hann Window on x(t), (X
h
(k)), L = 400, i = 4

Figure 10: Xh4 where L4 = 400

I went ahead and tested a larger window length, where L = 400. It is evident
that the Hann window has clear, distinct peaks with little to no noise. The
absolute difference between the magnitude of the peaks versus the magnitude
of the noise is incredible. On the other hand, the rectangular window’s three
peaks double in magnitude of the Hann windows, but is extremely noisy.

12



ECE 513 HW5 Arpad Voros

4. Use the fft algorithm in MATLAB to compute the DCT of a sequence

(a) Plot of sampdata

0 50 100 150 200 250 300

samples

-6

-4

-2

0

2

4

6

m
a
g
n
it
u
d
e

sampdata plotted, given for HW5

Figure 11: sampdata

(b) Plotting the DCT of sampdata using the dct function in MATLAB

0 50 100 150 200 250 300

k

-40

-30

-20

-10

0

10

20

30

m
a
g
n
it
u
d
e

DCT of sampdata using dct function

Figure 12: DCT of sampdata

As we can see, the signal is completely real.

13



ECE 513 HW5 Arpad Voros

(c) Plotting the DCT of sampdata by creating my own MATLAB routine, arpad_dct

0 50 100 150 200 250 300

k

-500

-400

-300

-200

-100

0

100

200

300

m
a

g
n

it
u

d
e

My DCT of sampdata, using the algorithm in slides

Figure 13: DCT of sampdata using arpad_dct

As we can see, the plot looks identical to the DCT using MATLAB’s built in dct

function. However, the magnitude is completely off. Therefore, the absolute error
will be massive. More in this in part (d). Here is the script:

1 function Sk = arpad dct(x, varargin)
2 % arpad dct() is simply a function which uses the fft()
3 % routine to calculate the DCT of a sequence x. limited
4 % in terms of N−point DCT; can only compute for 1 value
5 % of N
6 % INPUTS: x sequence
7 % OUTPUTS: result: resulting n−point DCT of sequence x
8

9 N = length(x);
10 % s(n) = x(n) −> 0 ≤ n ≤ N − 1
11 % s(n) = x(2N − 1 − n) −> N ≤ n ≤ 2N − 1
12 sn = [x, flip(x)];
13 Sk = fft(sn, 2*N);
14

15 k = 0:2*N − 1;
16 Sk = Sk .* exp(−1i * pi * (k / 2) / N);
17 Sk = Sk(1:N) / 2;
18

19 end

14



ECE 513 HW5 Arpad Voros

0 50 100 150 200 250 300

k

0

50

100

150

200

250

300

350

400

m
a

g
n

it
u

d
e

 o
f 

e
rr

o
r

Absolute error of dct and arpad_dct (corrected in part (d))

Figure 14: Absolute error of dct vs arpad_dct, incorrect

Since the magnitudes are so far off, our error is very wrong. In part (d), we correct
this to get a negligible absolute error.

(d) By going through the MATLAB documentation on their dct function, the following
shown in Figure 17 on page 17.

So I have incorporated that into the last line of my arpad_dct function

1 % scaled by an extra sqrt(2 / N), as seen in MATLAB documentation
2 Sk = Sk(1:N) * sqrt(2 / N) / 2;

Now the absolute error and the final result should be very similar to what MATLAB
has.

15



ECE 513 HW5 Arpad Voros

0 50 100 150 200 250 300

k

-40

-30

-20

-10

0

10

20

30

m
a
g
n
it
u
d
e

My DCT of sampdata, corrected from MATLAB documentation

Figure 15: DCT of sampdata using arpad_dct

As we see, the magnitude is very similar to ideal DCT in Figure 12.

0 50 100 150 200 250 300

k

0

0.5

1

1.5

2

2.5

3

3.5

4

m
a
g
n
it
u
d
e
 o

f 
e
rr

o
r

10-15Absolute error of dct and arpad_dct (now correct)

Figure 16: Absolute error of dct vs arpad_dct, correct

And the absolute error is incredibly small, which is extremely good! We have suc-
cessfully implemented our own DCT routine using MATLAB’s fft function.

16



ECE 513 HW5 Arpad Voros

Figure 17: MATLAB scales output by
√

2
N

17


